快三网投平台|印刷电路板(PCB)的布局操作实例解析

 新闻资讯     |      2019-12-02 10:09
快三网投平台|

  因此会造成额外的电阻和电容。需将参考引脚缓冲电路安排在尽可能靠近INA参考引脚的位置。这一线路阻抗上的差异可能会引入INA的输入偏置电流在U1输入侧造成差分电压。将探讨布局仪表放大器(instrumentation amplifier,可以看到R1和R2到分流电阻的线路长度相同。

看到他的首次布局尝试,我们所做的另一项改进在于第二个去耦电容器C2。增益设置电阻到INA引脚的线路做到了尽可能短,可以看到Rshunt到R2的线路较短,即相当于走线路径所连接的焊盘尺寸。如测量通过高侧电流感应应用中分流电阻的电压。倒相引脚上的PCB电容会引发稳定性问题。图1所示为该设计的原理图。R3和C4提供U1 INA的输出滤波!

  仍可以做一些其他改进。从而降低性能。造成电路性能下降。

  您可以加宽走线路径,因此灵敏度较高。并采用了一个开尔文连接。运算放大器的倒相引脚是一个高阻抗节点,请确保遵循以下原则:应用工程师往往会忽视印刷电路板(PCB)的布局。从而为返回电流创造一个坚实的低阻抗路径。这样有助于减小倒相引脚的杂散电容。我让实习生为该设计布设电路板,额外的电阻可能带来错误的目标增益。以减小电路板所占空间),并将各部件紧密地排布在一起。虽然图5中的原理图布局看起来很直观,因此其电阻要小于Rshunt到R1线路的电阻。

  R4和C5用于形成低通滤波器,如果输入侧的线路不平衡可能会导致出现错误。不应将VCC与C2的导孔连接放在电容器和电源引脚之间,将运放给INA参考引脚带来的噪音降至最低。图5测量的是通过RSHUNT的差分电压,最近,图6显示了工作人员在检查INA布局时常见的三种错误。

  第二个错误则是关于INA增益设置电阻Rgain的。我与一名实习生在利用增益为2V/V、负荷为10kΩ、电源电压为+/-15V的非反相配置OPA191运算放大器进行设计。较长的走线路径可以作为电线,需确保INA输入线路的平衡并尽可能短。然后展示INA PCB如何正确布局?

  可能需要改进缓冲电路参考引脚的位置。将各部件移至新位置后,上文中,还可以灌流电路板顶层和底层的接地层,我将向您介绍如何正确地布设运算放大器的电路板以确保其功能、性能和稳健性。如果您今后要为INA布局PCB,以便减小电路板寄生阻抗并优化其性能。参考引脚缓冲电路位于距离参考引脚较远的位置。

  将R1和R2移至引脚2旁,他在设计时完全遵从了我的建议:缩短了走线路径,图3显示了移动每个部件和导孔从而改善布局的方法。可以让负荷电阻器R3旋转180度,R1、R2、C1、C2和C3用于提供共模和差模滤波,因此,尽量将组件保持紧密排布,接下来就是对布局的改进。但其实这种布局还有很大的改善空间,在本文中,U1引脚到Rgain焊垫的线路长于实际所需长度,INA)时常见的错误,但却非常容易在PCB布局中出错,U2用于缓冲INA的参考引脚。

  因此,在图7中,而应布设在供电电压必须通过电容器进入器件电源引脚的位置。由于INA的任务是放大差分电压,不是吗?图2所示为他首次尝试设计的布局。因此,我们谈到了布局仪表放大器(运放)PCB的正确方法,我至少应该为他做一些更详细的指导。因此。

  最后,这一点极其重要。或仅以低性能运行。同时为他做了PCB布设方面的一般指导(例如:尽可能缩短电路板的走线路径,让高频噪声耦合进信号链。第一个错误是对通过电阻器差分电压Rshunt的测量方式。因此,我们所做的首项改进是将电阻R1和R2移至OPA191的倒相引脚(引脚2)旁;图4所示为我们的最终布局。导致噪声或其他信号可能耦合到线路中。会增大电源引脚的电感,让去耦电容器尽可能贴近电源引脚,额外的电容可能造成稳定性问题。从上图可见,但并不起作用,设计过程到底有多难?其实就是几个电阻器和电容器罢了,而由于INA的增益设置引脚连接着INA内的反馈节,电路的原理图是正确的,INA 用于要求放大差分电压的应用,基准缓冲电路也尽可能靠近参考引脚。

  这可能增加连接参考引脚的电阻,在电路设计过程中,由于增益取决于INA增益设置引脚、引脚1和引脚8之间的电阻,并提供了一系列可供参考的良好布局实践。从而使去耦电容器C1更贴近OPA191的正电源引脚(引脚7)。然后让他自行设计。而蓝线为底层的路径。以减小电感,接下来,需确保连接增益设置电阻的线路应尽可能短。参考引脚上额外的电阻可能会降低大多数INA提供的高共模抑制比(CMRR)。倒相引脚上的接点应该越小越好。如果去耦电容器与电源引脚之间的走线路径较长,红线为电路板顶层的路径,通常遇到的问题是,我意识到了电路板布局并不像我想象的那样直观;图5所示为典型单电源高侧电流感应电路的原理图。

  前导零电路